УДК 621.372.8

А. А. Вихарев, Г. Г. Денисов, С. В. Кузиков, Д. И. Соболев

Институт прикладной физики РАН ул. Ульянова, 46, Нижний Новгород, 603950, Россия

ВОЛНОВОДНЫЕ ПОВОРОТЫ ДЛЯ ЭФФЕКТИВНОЙ ПЕРЕДАЧИ МОДЫ ТЕ₀₁ КРУГЛОГО ВОЛНОВОДА

В статье рассматривается два новых варианта поворотов волновода круглого сечения с распространяющейся TE₀₁ модой. Первый вариант – поворот с неизменным круглым сечением и переменной кривизной, профиль которой получен методом синтеза. Второй вариант – поворот с использованием перехода с круглого на эллиптическое сечение волновода и с профилем кривизны поворота, оптимизированным с помощью теории Чебышевских переходов.

Введение

Для передачи мощного СВЧ излучения миллиметровых волн часто используют сверхразмерные (поперечные размеры которых существенно превышают длину волны) круглые волноводы и, в качестве рабочей, волну ТЕ₀₁, отличающуюся малыми потерями и нулевым электрическим полем на стенке. Одним из необходимых компонентов таких линий передачи являются повороты, которые для волны ТЕ₀₁ всегда нетривиальны, поскольку рабочая волна вырожденна с волной ТМ₁₁ и на изгибе волновода происходит их эффективный энергообмен. Соответственно, для минимизации рассеяния рабочей волны на повороте необходимо снять вырождение указанных мод. В принципе задача не нова и некоторые подходы к ее решению можно найти в [1]. В статье рассматриваются два способа снятия вырождения: эллиптическая деформация исходного круглого сечения волновода и использование связи указанных волн с некоторыми вспомогательными волнами. Для первого способа радиус кривизны поворота оптимизируется вдоль волновода для обеспечения широкой рабочей полосы частот. Во втором случае сечение волновода остается круглым, но в кривизну добавляются дополнительные осциллирующие слагаемые, обеспечивающие взаимодействие мод ТЕ₀₁ и ТМ₁₁ не только между собой, но и с другими различными модами, что ведет к снятию вырождения «в среднем» по периоду осцилляций. Оба отмеченных выше подхода использованы для конструирования $90^\circ = x$ поворотов, испытанных затем в 8-миллиметровом диапазоне длин волн. Для эллиптического поворота основной целью расчета было широкополосное согласование круглого и эллиптического волноводов и оптимизация профиля кривизны. Синтез переменной кривизны волновода круглого сечения показал дополнительные возможности конструирования поворотов для многомодовых волноводов.

Поворот с переменным радиусом кривизны

Для расчета поворота волновода с круглым поперечным сечением был применен итерационный метод синтеза преобразователей мод, описанный в [2]. В этом методе при фиксированной длине преобразователя задаются граничные значения комплексных амплитуд волноводных мод на входе и выходе, соответствующие исходному распределению поля в начале и требуемому в конце преобразователя. Затем рассчитываются распределения комплексных амплитуд мод внутри преобразователя, найденные с помощью первого (на входе) и второго (на выходе) граничных условий. Из разницы указанных решений на каждом шаге итерационного процесса производится поправка к профилю преобразователя. В случае поворота волновода искомой функцией является профиль его кривизны.

Для демонстрации возможностей метода были специально выбраны «трудные» начальные параметры, при которых на рабочей частоте 34,272 ГГц в волноводе диаметром 15,74 мм с постоянной кривизной на повороте 90° происходит практически полное преобразование моды TE_{01} в вырожденную моду TM_{11} (рис. 1, *a*), т. е. угол поворота равен углу Жуге [3]. В одном из найденных синтезированных решений профиль кривизны содержит кроме постоянного члена (обеспечивающего поворот на заданный угол) также две гармоники (рис. 2, *a*), связывающие рабочие волны с волнами TE_{11} и TE_{12} . В результате этих дополнительных связей вырождение рабочих волн снимается «в среднем» и на выходе синтезированного волноводного поворота обеспечивается практически 100 % мощности в моде TE_{01} (см. рис. 1, δ). Вспомогательные волны TE_{11} и TE_{12} появляются внутри поворота и исчезают к его концу. Результаты синтеза волноводного поворота представлены на рис. 2.

Для проверки синтезированного поворота использовался метод поперечных сечений с учетом отражения [4]. В расчете методом поперечных сечений, как и при синтезе, учитывались все девять распространяющихся мод. По результатам проверки эффективность преобразователя составила 99,9 % на

Рис. 1. Распределения мощностей волн внутри преобразователя в зависимости от продольной длины, где а – профиль не обеспечивает; б – профиль обеспечивает полное преобразование исходного поля в искомое (пунктиром показаны мощности волн при расчете с использованием второго (на выходе) граничного условия)

Рис. 2. Профили: *a* – радиуса кривизны в зависимости от продольной координаты; б – поворота в продольном сечении

Рис. 3. Результаты расчета волноводного поворота методом поперечных сечений, где *а* – прохождение моды TE₀₁ и ее рассеяние в паразитные моды на выходе поворота; *б* – мгновенное распределение амплитуды электрического поля в продольном и поперечном сечении волноводного поворота

частоте 34,272 ГГц, и ширина полосы преобразования по частоте составила около 1 % на уровне 95 % мощности. Результаты расчета методом поперечных сечений представлены на рис. 3.

Задача об оптимальном согласовании

Поворот эллиптического поперечного сечения представляет собой устройство, работающее на волноводной моде, являющейся невырожденной. Однако паразитное рассеяние рабочей моды в другие распространяющиеся моды не исчезает. Поэтому для обеспечения высокой эффективности и максимально широкой полосы передачи необходима оптимизация профиля кривизны изгиба.

Оптимизация профиля может быть выполнена с помощью теории Чебышевских переходов [5; 6]. Для этого рассмотрим достаточно общую задачу согласования двух волноводных секций (первой и третей) за счет участка второй секции между ними с распространяющимися в них двумя связанными волнами. Одна из волн рабочая, второй пусть будет та связанная с первой волна, связь с которой максимальна. В первой волноводной секции распространяется волна, которую необходимо сохранить без потерь при переходе в третью секцию с другими параметрами. Иначе говоря, необходимо рассчитать согласующий участок, который обеспечивает отсутствие паразитной моды в последней секции (рис. 4). В качестве таких секций могут выступать, в частности, отрезки изогнутых волноводов в задаче оптимизации кривизны поворота или отрезки волноводов сложного поперечного сечения в задаче о переходе от круглого волновода к волноводу требуемого поперечного сечения.

Для решения задачи воспользуемся системой уравнений связанных волн для двух парциальных мод, распространяющихся в обеих волноводных секциях:

$$\begin{cases} \frac{\partial A_1}{\partial z} - i\delta A_1 = i\kappa A_2\\ \frac{\partial A_2}{\partial z} + i\delta A_2 = i\kappa A_1 \end{cases},$$
(1)

где *κ* – коэффициент связи между модами, δ – расстройка между их постоянными распространения. Связь между модами обусловлена отличием рассматриваемой волноводной секции от прямолинейного волновода простого (в частности, круглого) поперечного сечения.

Решение системы уравнений (1) можно записать в виде линейной комбинации нормальных мод:

$$\begin{cases} A_{1} = \frac{B_{1}e^{i\gamma z}}{1+\alpha^{2}} + \alpha^{2} \frac{B_{2}e^{-i\gamma z}}{1+\alpha^{2}} \\ A_{2} = \alpha \frac{B_{1}e^{i\gamma z}}{1+\alpha^{2}} - \alpha \frac{B_{2}e^{-i\gamma z}}{1+\alpha^{2}}, \end{cases}$$
(2)

где $\gamma = \sqrt{\delta^2 + \kappa^2}$ и $\alpha = \frac{\delta - \gamma}{\kappa}$, а B_1 и B_2 – амплитуды нормальных мод, подчиняющихся системе уравнений:

$$\begin{cases} B'_1 + i\gamma B_1 = -\frac{\alpha}{1+\alpha^2} B_2 \\ B'_2 - i\gamma B_2 = \frac{\alpha}{1+\alpha^2} B_1 \end{cases}$$
(3)

Если параметры среды не меняются по длине, то коэффициенты в правой части уравнений (3) равны нулю. Решение системы при этом представляет собой две свободно распространяющиеся нормальные моды с постоянными распространения + γ и – γ . В случае волноводной секции с меняющимися параметрами необходимо найти α_{II} и длину согласующего участка *L*, чтобы выполнить условие отсутствия паразитной волны в третьей волноводной секции $B_2^{III} = 0$ (см. рис. 4).

Воспользовавшись равенством амплитуд парциальных мод на границах сред: $A_{1,2}{}^{I} = A_{1,2}{}^{II}$ при z = 0 и $A_{1,2}{}^{II} = A_{1,2}{}^{III}$ при z = Lс учетом $B_{2}{}^{III} = 0$, получим систему из четырех алгебраических уравнений, решение которой относительно α_{II} дает искомый результат в виде двух условий:

$$\begin{cases} \gamma_{II}L = \frac{\pi}{2} \\ \alpha_{II} = \frac{-1 + \alpha_{I}\alpha_{III} + \sqrt{1 + \alpha_{I}^{2} + \alpha_{III}^{2} + \alpha_{I}^{2}\alpha_{III}^{2}}}{\alpha_{I} + \alpha_{III}} \end{cases} (4)$$

Полученное решение (4) при увеличении числа согласующих участков можно использовать для построения плавного перехода от одной волноводной секции к другой. На рис. 5 показан пример построения сглаженного перехода при большом числе согласующих участков.

Поворот с эллиптическим поперечным сечением

Рассмотрим волноводный поворот, основанный на переходе с круглого поперечного сечения на эллиптическое. Расчет собственных мод эллиптического волновода производился методом интегральных уравнений [7]. Была выбрана эллиптичность, обеспечивающая достаточное различие между постоянными распространения мод TE_{01} и TM_{11} (рис. 6, *a*) в соответствии с очевидным критерием $\Delta h \cdot L \ge \pi$, где Δh – разность постоянных распространения мод, а L – длина поворота.

Заметим, что в волноводе эллиптического сечения мода TM₁₁ расщепляется на высокочастотную и низкочастотную моды, имеющие

Рис. 4. К задаче согласования сред I и III, где *L* – длина согласующего участка

Рис. 5. Сглаженный переход для согласования двух сред (I и N)

различную ориентацию электрического поля относительно эллипса (см. рис. 6, δ). При повороте волновода в плоскости большой оси эллипса мода TE_{01} связывается только с высокочастотной модой TM_{11}^{H} , а при изгибе в плос-

кости малой оси – с низкочастотной TM₁₁^L.

Оптимальный профиль радиуса кривизны может быть найден, если представить поворот в виде участков постоянной кривизны, длины и радиусы кривизны которых могут быть найдены на основе методики предыдущего параграфа с использованием формулы (4). При этом предельное (в пределе бесконечного числа согласующих участков) решение задачи об оптимальной, по Чебышеву, передаче невырожденной моды в волноводном повороте круглого сечения было получено в [6]. Воспользуемся найденным в [6] пределом для кривизны поворота $\chi(z)$ в зависимости от продольной координаты для нашего случая волновода эллиптического сечения:

$$\chi(z) = \frac{\rho_0}{\cosh(A)} \left\{ \frac{A^2}{L} \frac{I_1 [A\sqrt{1 - (2z/L)^2}]}{A\sqrt{1 - (2z/L)^2}} + \frac{1}{2} \left[\delta \left(z - \frac{L}{2} \right) + \delta \left(z + \frac{L}{2} \right) \right] \right\},$$
(5)

здесь z – координата вдоль поворота (z = [-L/2, L/2]), I_1 – модифицированная функция Бессе-

Рис. 6. Нормированные критические частоты мод в зависимости от эллиптичности сечения (*a*), где с пометками Н – высокочастотное и L – низкочастотное колебания моды TM11; распределение электрического поля в поперечном сечении для TM₁₁H и TM₁₁L (*б*)

Puc. 7. Решение, полученное путем оптимизации волноводного поворота эллиптического поперечного сечения: *a* – зависимость кривизны поворота от продольной координаты; *б* – вид поворота в продольном сечении (пунктиром для сравнения показан поворот с постоянным радиусом кривизны)

ля 1-го рода, L – длина поворота, ρ_0 и A – параметры изгиба. Из выражения видно, что в кривизне присутствуют неустранимые скачки в начале и конце поворота, что связано с наличием первого и последнего согласующих участков (см. рис. 4 и 5).

Выбор параметров ρ_0 , A и длины L осуществлялся из соображений обеспечения эффективности не ниже 99 %, максимальной ширины полосы (не менее 10 %) и минимальных величин скачков кривизны на концах, что обусловлено удобством изготовления (рис. 7, *a*). В результате выбора параметров был предложен волноводный поворот эллиптического сечения на частоту 34 ГГц с большой и малой осями эллипса – 14 и 10,5 мм соответственно. Поскольку задача об оптимальном согласовании была решена в приближении двух связанных мод (в этом же приближении получена формула (5)), а число распространяющихся мод в выбранном волноводе существенно больше, поворот был независимо проверен расчетом по методу поперечных сечений с учетом всех распространяющихся волн. Согласно проведенным расчетам эффективность составила 99,9 % на центральной рабочей частоте 34,272 ГГц (рис. 8, а).

Поворот был выполнен в плоскости большой оси эллиптического сечения. Такой поворот предпочтителен с точки зрения обеспечения электропрочности на больших СВЧ мощностях. Поскольку поворот изготавливается из двух соединенных воедино одинаковых металлических брусков, в каждом из которых выфрезировывается лишь половина канала волновода, то неизбежна щель, соединяющая бруски. При выбранном виде поворота поле рабочей моды эллиптического волновода близко к нулю у стенок, как раз в местах соединений (см. рис. 8, *б*).

Для согласования входа и выхода поворота с волноводами кругового сечения были рассчитаны и изготовлены два одинаковых перехода с круглого сечения на эллиптическое. Переходы были оптимизированы с помощью методики, изложенной в разделе об оптимальном согласовании. Для обеспечения компактности длина перехода соответствовала длине всего одной согласующей секции. Основной паразитной волной, связанной с рабочей, являлась мода TE_{21} , уровень которой минимизировался. Переход обеспечил высокую эффективность преобразования моды TE_{01} волновода кругового сечения в рабочую моду поворота, имеющего эллиптическое сечение, в полосе частот, превышающей рабочую полосу частот самого поворота (рис. 9).

Рис. 8. Результаты расчета волноводного поворота с эллиптическим поперечным сечением, где а – прохождение рабочей моды через поворот и ее рассеяние в паразитные моды, б – мгновенное распределение амплитуды электрического поля в продольном и поперечном сечении волноводного поворота

Рис. 9. Результаты расчета волноводного перехода с круглого сечения на эллиптическое, где
 а – эффективность передачи ТЕ01 моды с круглого сечения в эллиптическое;
 б – мгновенное распределение амплитуды электрического поля в переходе

Puc. 11. Зависимость эффективности прохождения моды TE₀₁ через волноводные повороты:
 a – с неизменным круглым сечением и переменным радиусом кривизны;
 б – с эллиптическим поперечным сечением (пунктиром обозначены результаты расчета)

Экспериментальная проверка волноводных поворотов

Рассчитанные повороты были изготовленны из алюминия марки Д16. Для измерения эффективности поворотов была собрана установка, блок-схема которой представлена на рис. 10. Рабочая мода TE₀₁ возбуждалась с помощью широкополосного преобразователя Марье и регистрировалась с помощью первого направленного ответвителя. После прохождения поворота мода TE₀₁ полностью отражалась от подвижного поршня, выполненного в виде отрезка волновода закритического (в исследуемой полосе частот) сечения. Закритический волновод был способен пропускать все моды с более низкими критическими частотами, чем у ТЕ₀₁. Отраженное излучение на моде ТЕ₀₁ после прохождения всего тракта в обратном направлении регистрировалось с помощью второго направленного ответвителя. Считая, что все возникающие паразитные моды теряются, проходя сквозь поршень, отношение сигналов со второго и первого ответвителей дает эффективность двукратного прохождения рабочей моды через поворот.

Положение поршня влияет на фазу отражения паразитных мод, но в эксперименте на рабочей частоте изменения уровня отражения в пределах точности измерений не наблюдалось, что подтверждает высокую эффективность поворотов.

На рис. 11 представлены экспериментальные данные по эффективности поворотов в зависимости от частоты, которые хорошо согласуются с расчетом. Параметры волноводных поворотов приведены ниже:

Параметры поворота	С круглым сечением	С эллиптическим сечением
Эффективность на частоте 34,272 ГГц	$98\pm2\%$	98 ± 2 %
Полоса пропускания по 95 %-му уровню	1,3 %	10 %
Средний радиус волновода	7,87 мм	6,13 мм
Эллиптичность волновода (<i>a</i> / <i>R</i>),	0	0,14
малая и большая полуоси эллипса	_	5,25; 7 мм
Продольная длина поворота	145,9 мм	250 мм

Заключение

Исследованы два новых варианта волноводных поворотов, обеспечивающих эффективную передачу моды TE₀₁ за счет снятия вырождения с модой TM₁₁.

Первый – волноводный поворот переменного радиуса кривизны, имеет полосу пропускания 1,3 % по уровню 95 % и эффективность 98 ± 2 % на частоте 34,272 ГГц.

Второй – волноводный поворот эллиптического поперечного сечения, обеспечивает широкую полосу передачи моды $TE_{01} - 10$ % по уровню 95 % и имеет эффективность не хуже 98 % на частоте 34,272 ГГц.

Список литературы

1. Волноводные линии передачи с малыми потерями: Сб. ст. / Под ред. В. Б. Штейншлейгера. М.: Иностр. лит., 1960. 480 с. 2. Денисов Г. Г., Калынова Г. И., Соболев Д. И. // Изв. вузов. Радиофизика. 2004. Т. 47, № 8. С. 688.

3. *Jouguet M*. Effets de la courbure dans un guide à section circulaire // Càbl. et Trans. 1947. Vol. 1. No. 2. P. 133.

4. Каценеленбаум Б. 3. Теория нерегулярных волноводов с медленно меняющимися параметрами. М.: Изд-во АН СССР, 1961. 217 с.

5. *Klopfenstein R. W.* A transmission line taper of improved design // Proceedings of the IRE. 1956. No. 1. P. 31.

6. *Керженцева Н. П.* Волноводный изгиб переменной кривизны // Радиотехника и электроника. 1960. No. 5. C. 733.

7. Denisov G. G., Kuzikov S. V. Eigenmodes evolution due to changing the shape of the waveguide cross-section // Int. J. of Infrared and Millimeter Waves. 1997. Vol. 18. No. 3. P. 733.

Материал поступил в редколлегию 01.04.2007